Generalized Reed-Muller Codes
نویسنده
چکیده
the possible choices for n and k are rather thinly distributed in the class of all pairs (n, k) with k ~ n--and it is, therefore, often inefficient to make use of such codes in concrete situations (that is, when a desired pair (n, k) is far from any achievable pair). We have succeeded in overcoming this difficulty by generalizing the Reed-Muller codes in such a way that they exist for every pair (n, k). I t should perhaps be emphasized that for given n and k our procedure enables us (with very little effort) to exhibit (n, k) codes explicitly in terms of a basis and to know their error-correcting capabilities. We shall illustrate this assertion in the course of the discussion by constructing a (26, 11) code which turns out to be 3-error-correcting. As a rule, the distance properties of our codes are not as good as those of the Bose-Chaudhuri codes (see Bose and Ray-Chaudhuri (1960), Gorenstein and Zierler (1961), Peterson (1961), and Weiss (1960)). This seems to be due to the fact that our codes depend on a simple kind of additive averaging and that multiplieative properties do not enter. The decoding procedure rests on the customary majoriW testing (Reed, 1953). We also discuss the canonical form, that is, where the code vectors consist of k information bits followed by n k parity check bits.
منابع مشابه
Another Generalization of the Reed-Muller Codes
The punctured binary Reed-Muller code is cyclic and was generalized into the punctured generalized ReedMuller code over GF(q) in the literature. The major objective of this paper is to present another generalization of the punctured binary Reed-Muller code. Another objective is to construct a family of reversible cyclic codes that are related to the newly generalized Reed-Muller codes. Index Te...
متن کاملOn the third weight of generalized Reed-Muller codes
In this paper, we study the third weight of generalized Reed-Muller codes. Using results from [6], we prove under some restrictive condition that the third weight of generalized Reed-Muller codes depends on the third weight of generalized Reed-Muller codes of small order with two variables. In some cases, we are able to determine the third weight and the third weight codewords of generalized Re...
متن کاملGeneralized Reed-Muller codes over Galois rings
Recently, Bhaintwal and Wasan studied the Generalized Reed-Muller codes over the prime power integer residue ring. In this paper, we give a generalization of these codes to Generalized Reed-Muller codes over Galois rings.
متن کاملRemarks on low weight codewords of generalized affine and projective Reed-Muller codes
A brief survey on low weight codewords of generalized Reed-Muller codes and projective generalized Reed-Muller codes is presented. In the affine case some information about the words that reach the second distance is given. Moreover the second weight of the projective Reed-Muller codes is estimated, namely a lower bound and an upper bound of this weight are given.
متن کاملThe Generalized Reed-Muller codes and the radical powers of a modular algebra
First, a new proof of Berman and Charpin’s characterization of the Reed-Muller codes over the binary field or over an arbitrary prime field is presented. These codes are considered as the powers of the radical of a modular algebra. Secondly, the same method is used for the study of the Generalized Reed-Muller codes over a non prime field.
متن کاملOn Low Weight Codewords of Generalized Affine and Projective Reed - Muller Codes ( Extended abstract )
We propose new results on low weight codewords of affine and projective generalized Reed-Muller codes. In the affine case we give some results on codewords that cannot reach the second weight also called the next to minimal distance. In the projective case the second distance of generalized Reed-Muller codes is estimated, namely a lower bound and an upper bound of this weight are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information and Control
دوره 5 شماره
صفحات -
تاریخ انتشار 1962